THE LINEAR RESISTANCE BETWEEN PARALLEL
CONDUCTING CYLINDERS IN A MEDIUM
OF UNIFORM CONDUCTIVITY.

By A. E. KENNELLY.
(Read April 24 1909.)

It is the purpose of this paper to present formulas and tables
for the computation of the linear resistances, conductances and
capacities between parallel cylindrical conductors, or between a
cylindrical conductor and a parallel indefinitely extending conducting
plane. As is shown in the appended bibliography, the problem is
by no means new ; but the mathematical mode of presentation, and
the arithmetical tabulation, here offered, are believed to be new.
It is hoped that these will be useful to students of electrical engi-
neering. Antihyperbolic functions are the natural vehicles of ex-
pression adapted to this problem.

InFINITE CONDUCTING PLANE AND PARALLEL CYLINDER.
Linear Resistance.—Let a uniform conducting cylinder of radius

D

Ofg-=--+ fe =

ZI
Fic. 1. Section of a conducting cylinder DEF parallel to the indefinitely
extending conducting plane Z'0OZ.

o cm., shown in section at DEF in Fig. 1, be situated at an axial
distance d cm. from a parallel indefinitely extending conducting
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plane Z’0OZ. Let the space above the plane unoccupied by the
cylinder be filled by an indefinitely extending medium of uniform
resistivity p absohm-cm. Then the linear resistance between the
plane and the cylinder, i. ¢., the resistance of the medium between
them, as comprised between a pair of infinite parallel planes per-
pendicular to the cylinder and 1 cm. apart, will be

p 1(a’) absohm-cms. or C.G.S. magnetic
7, =- - cosh™
» 27 g

If the conducting surface DI of the cylinder were unrolled
into a flat conducting ribbon 2z¢ cm. in breadth, and the ribbon
were supported parallel to the plane Z’OZ at a uniform distance
L =0 cosh™'(d/¢) cm. above it, as indicated in Fig. 2, with ver-
tical insulating side walls, Ez’ and Fez, to limit the flow of current
through the medium to the parallel distribution shown; then the

’

. . . . 1
units of resistance in a linear cm. )

rectangular slab of medium EFzs’ of Fig. 2, would be the equi-
valent in electric resistance to the indefinitely extending plane and
cylinder system of Fig. 1.

In Fig. 2 the depth, or distance across the slab, following

the lines of current flow, is L=¢ cosh™*(d/c) cm., and the

5=

o) z

Fic. 2. Equivalent slab section corresponding to infinite plane and parallel
cylinder of Fig. 1.

surface arca of cach face of the slab, per linear cm. of its length,
is § ==2m¢ cm.?/cm. so that the linear resistance of the whole is
L a cosh™! (d/o d
o cosh™ (/o) = P cosh- ( > absohm-cm. (2)
270 2m g
Since the linear resistance of the plane cylinder system of Fig. 1,
or of the slab in Fig. 2, does not depend upon its absolute dimen-
sions, the scale of linear dimensions in the diagram may be chosen
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such that o=1 unit, in which case the depth of the slab is
cosh™d units and the breadth of the slab is 2= units.
The quantity V defined by the relation

Y =cosh*(d/o) numeric (3)

may be called the distance factor of the plane-cylinder system;
because the distance between electrodes in the equivalent slab of
Irig. 2 is

IL=Yw cm.

When the radius o of the cylinder is very small with respect
to the distance d; so that d/e is a large number, we have

d
YV=log, ?O_ numeric (4)

so that for such cylinders the linear resistance

P P 2d
= W= z;log{7 absohm-cm. (5)
The accompanying table gives for successive values of d/c in
column I., the corresponding value of ¥ in column II. Column III.
gives the resistance factor YV /2z which, when multiplied by the
resistivity p of the medium, gives the linear resistance of the plane-
cylinder system considered. ]
Thus, if a conducting cylinder with a radius of 2 cm. is sup-
ported at an axial distance of 10 cm. from an infinite conducting
plane, in a medium of resistivity p==3 X 10'® absohm-cms., we
have d/c=135. The table gives for this ratio the value of V¥ as
2.2024, and the value of the resistance factor ¥V /2r=—=0.3649; so
that the linear resistance of the system will be 3 X 10" X 0.3649
= 1.0047 X 10'° absohm-cms. ; or 10.947 ohms in a linear cm.
Linear Conductance—The linear conductance, or conductance
per linear cm. of the plane-cylinder system will be by (1)

21 2 20
@ = T = T, = o SE
°r " pcosh™ (dfo)  pY Ty

where y is the uniform conductivity of the medium in abmhos per

abmhos per cm. (6)
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cm. The quantity 27/¥ may be called the conductance-factor of
the plane-cylinder system. It appears in column V. of the table.

Thus, if a conducting cylinder of radius ¢=0.5 cm. be sup-
ported at an axial distance of d=7.5 cm. from an infinite con-
ducting plane, in a medium of conductivity y=10"° abmhos per
cmi., the ratio d/¢ in column I. is 15, and the conductance factor
for this ratio appears in column V. as 1.848. The linear conduct-
ance of the system is thus 1.848 X 107'° abmhos per cm. The
distance-factor of the system is given in column II. as 3.4001; so
that the depth of the equivalent rectangular slab of medium is
1.700 cm., the breadth being 3.142 cm.

Linear Electrostatic Capacity—The linear capacity ¢, of a
plane-cylinder system in a dielectric medium of specific inductive
capacity «, is numerically the same as the linear conductance of the
same system in a medium of conductivity x/4= or resistivity 4=/k;
so that, in C.G.S. electrostatic units:

K 1
¢, = > cosh i (@) — £y statfarads per cm. (7)

The values of the capacity factor 1/(2Y) appear in column VI. of
the table for each selected value of d/e.

Thus, a cylinder of radius o =0.4 cm. is supported at an axial
distance of 1 cm. from an infinite conducting plane in a medium of
k=1. Hered/oc=2.5,and 1/(2Y)=o0.3192. The linear capacity
of the system is therefore 0.3192 statfarad per cm.

In order to convert the linear capacity ¢, statfarads per cm. into
microfarads per km., expressed by ¢,’, we have:

¢, = %’ = ; : OI);; microfarads per km. (8)

Similarly, to express the linear capacity in microfarads per mile

. p K I

s = - = S .1
, 5.501  5.501 X - microfarads per mile (9)

That is, we must divide the capacity-factor of the table by g to obtain
microfarads per km. or by 5.591 to obtain microfarads per mile.

PROC, AMER. PHIL. SOC., XLVIII. 192 K, PRINTED SEPTEMBER 2, 1909.
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PoTENTIAL DISTRIBUTION.

On the Median Line Beneath the Cylinder—It is well known
that the flow of electric current, and the distribution of potential,
between the conducting cylinder and the plane, are such as might be
produced by removing the conducting cylinder and substituting a
conducting polar line at A4, parallel to the plane. The point A lies
on the line OC, and at a distance @ from the plane defined by the
relation

a=gsinh Y —=V/d* — % cm. (10)

The values of the polar ratio a/o are given in the table in column
VII. for each of the selected ratios d/¢ up to d/o= 50, beyond
which the difference between a/o and d/o is less than 1 part in
5,000. [for most practical purposes, it is, therefore, sufficient to
regard the polar line as coinciding with the cylinder axis when the
distance of that axis from the plane exceeds 50 radii.

In the steady state of flow, the potential at any point y, on the
line 04 (Fig. 3) distant v, em. from O, will be

u, = [::; tanh=! (%) - abvolts (11)

where [ is the current strength per linear cm. of the system in
absamperes, the potential of the plane Z'OZ being taken as numer-
ically zero.

Similarly, the potential at any other point v, on the median line
OY, below A, distant v, em. from O, will be:

w, =1 P tanh=! 2 abvolts (12)
Z g a

Consequently, if the potential of the surface of the cylinder be u,,
and y, be the distance of the lowest point of the cylinder from the
plane, the potential of any other point on the line OA between the
cylinder and the plane, distant v, cm. from the latter, will be:

tanh™' (7,/a)
" tanh~! (1 ]a)

Potentials on the Median Line Abowve the Cylinder.—In the
steady state of flow, the potential at any point ¥, on the median line
0Y, and distant y, cm. from O, above the polar point 4, is:

abvolts (13)

112 =
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- T
u, ] coth™! (ﬂ) abvolts (14)

where [ and = have the same meanings as above, and the potential
of the plane Z’OZ is reckoned as zero.

Similarly, the potential at any other point y, on the mcdlan line
0V, distant v, cm. from O, and above the polar point A, is

y/ ’
2, = : coth™ <%‘) abvolts (13)

Consequently, if the potential of the surface of the cylinder be
u,, and y, be the distance of the highest point of the cylinder from
the plane, the potential at any other point on the median line, above
the cylinder, and distant y, cm. from the plane, will be:

coth™ (7,/a)
= s Coth ! (7] a)

Potentials at Points Outside the Cylinder and off the Median
Line.—I1f the point in the plane Z’'VZ at which the potential is
required, lies off the median line OV, the potential may be expressed
either:

(a) In termms of rectangular codrdinates & and v of the point.

(b) In terms of the ratio of radii vectores to the point, from the
polar point A, and from its image.

(a) Potential in Terms of Rectangular Coirdinates—lLet P,
Iig. 3, be the point whose potential is required, and whose rectan-
gular codrdinates are y and £, measured respectively along the me-
dian line OV, and the line OZ in the infinite conducting plane.
Then #, the potential of P, is:

abvolts (16)

/i y
"= zp tanh™ ((z 7+2J(/ZJ+ ﬁ_) abvolts (17)

where /7, p and a have the values previously assigned, and the poten-
tial of the plane Z’OZ is reckoned as zero. Eliminating /p/» with
the aid of (11), we have:

o  2v
tanh ((5+J,2+32

2 tanh~! (_]’:/(Z)

° =1 abvolts (18)
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u, is the potential of the conducting cylinder, upon the lowest point

of which y=v, and 2==o0. Thus, taking the point P in Fig. 3,
defined by the cobrdinates y=1 and z=—2, and referring the
Y

Y

B

Fic. 3. Codrdinates of a point at which the potential is required.

potential # of P to u,, the potential of the surface of the cylinder,
where vy, — 2, z=0, we have a = 3.4642 and

tanh='(6.9284/17)

"=y tanh~'(2/3.4642)

= 0.3285%,.

Formula (18) may also be presented in the form:

2a
tanh—! (— .,~—Ty'!—2
a+y+s

=S N o R abvolts (19)
tanh~" ( e 2)
a 4 7

() Potential in Terms of Radii Vectores.—A line parallel to
the axis of the conducting cylinder, drawn through the point B,
Fig. 3, on the median line OY and with the distance OB = 04, may
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be called the 7mage of the polar line through OA. The point B,
thus defined, may be called the mmage polar point. The points A
and B, taken together, may be called the polar points of the diagram
with respect to the infinite plane and cylinder.

Let P be any point in the plane of the diagram (Fig. 3). Then
let " and » be the lengths of a pair of radii vectores BP, AP, drawn
from the polar points B, A, to P respectively. Let these distances
7'r be called the polar distances of the point P. Then the ratio m
of these polar distances will be:

m=r'/r numeric (20)

This ratio may be called the polar ratio, for purposes of reference.
The polar ratio will manifestly be a number greater than unity for
all points in the diagram above the infinite conducting plane Z'OZ.
It is a well known result that

zp
U= Zﬂ;logc mn abvolts (21)

1f a point be selected on the surface of the cylinder, having a poten-
tial 14, abvolts, and for convenience the lowest point of codrdinates
y, and £==o0, the polar distances of this point may be denoted by
r," and 7, ; while their ratio may be denoted by m, —vr,"/r,. Con-
sequently

7
sy = yzfr log, 112, abvolts (22)

and eliminating 7, p and 2= between (21) (22), we have

log, e log,,

U = 7[11' " = Wk f
0g, 7, Ogm 7y

abvolts (23)
The potential of the infinite plane is here reckoned as zero. It may
be observed that

v a+d—o a+4d .
my=—t=————= — numeric (24)

l’] g

1

When the cylinder radius is very small, compared with the axial
distance d, d =a, and
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M == — = numeric (25)

It follows from the preceding equations that the equipotential
surfaces in an infinite plane-cylinder system are all cylinders having
their axes situated on the median line. If #, be the potential of the
conducting cylinder, and if we denote by ¥, the value of the distance
factor ¥V for this cylinder, according to formula (3), or to column
II. of the table, then the distance factor V of any cylindricai equi-
potential surface whose potential 1s # becomes

u .
We= Y]Z‘ numeric (26)

We have for any such cylinder the equations of condition:

Y =cosh*(d/o) =sinh*(a/os) =tanh ' (a/d) = coth*(d/a)
=2 tanh™*(y/a) numeric (27)

whence d, the axial distance, or v coordinate, of the cylinder whose
potential is %, will be along the median line OV :

a

A= cm. (27)

tanh ( ' w's )
u,

and the radius ¢ of this equipotential cylinder is:

a

= u\

sinh < Yl—>
u,

The cobrdinate y of the lowest point of any such equipotential

cm. (28)

cylinder will be:
m—1
y=a < ;}z’-{-’- I) ©innl, (29)
Y Y, '
=atanh<—)=atanh (——17—1—) cm. (30)
2 2 u

tanh™! gl
1+ 1

tanh~'(y,/a)

so that

abvolts (31)

”=”l'
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an expression for the potential of a point in the medium in terms
of its polar ratio m, and the distance y, of the conducting cylinder
from the plane. ‘
The current density 8 at any point whose polar distances are
r and 7" will be perpendicular to the equipotential cylinder passing
through the point and will be equal to
St [—Z, absamperes per cm.? (3 1)
T ¥
The preceding formulas for potential distribution have been de-
veloped with reference to a conducting medium between the infinite
plane and cylinder. They are, however, applicable to the case of a
dielectric medium, if the electric flux ¢ replace the electric current
I, and the dielectric constant « be substituted for y or 1/p. No
substitution will be needed in formulas (13), (16), (18), (19) and
(23) to (31), inclusive, which apply either to an insulating or to a
conducting medium.

Two EguaL AND PARALLEL CoNDUCTING CYLINDERS.

If, instead of an infinite conducting plane and a parallel conduct-
ing cylinder, as in Figs. 1 and 3, we have two indefinitely long par-
allel conducting cylinders of equal diameter, as in, Fig. 4, at an
interaxial distance CC” of D cm., then each cylinder may be regarded
as forming an independent plane-cylinder system with a fictitious
infinite conducting midplane Z’0OZ, axially distant d=D/2 cm.
from each. This midplane will be perpendicular to the central line
CC’. The double-cylinder system will have two polar lines equi-
distant from the system center O, and represented in Fig. 4 by the
polar points A4A’. The potential of the midplane Z’OZ will be
midway between the potentials of the two cylinders; so that if these
have equal and opposite potentials, the potential of the midplane
will be zero. All of the preceding formulas for plane-cylinder sys-
tems may, therefore, be applied, in duplicate, to the double-cylinder
system of Fig. 4.

Linear Resistance of Double Cylinder Systems.—The linear
resistance from either cylinder to the midplane is given in formula
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(1). Consequently, the linear resistance of the double cylinder
system of Fig. 4 is

P = 'Scosh‘1 (d]o) = fr Yy absohm-cms. (32)

where d=D/2. The resistance factor of the system is thus ¥/,
or double that given in column III. of the table.
Thus, if the two cylinders, each of radius =2 cm. separated

Fi6. 4. Two equal and parallel conducting cylinders at interaxial distance
of D cm.

by an interaxial distance D=8 cm. in a medium of resistivity
p =75 X 10" absohm-cms. we have d =4, and d/o =2.
Y = cosh-* 2=1.317, and the linear resistance is

”

5 x 10"

— 10 _
"0 ="31416 ¢ 1.317 =.2.096 x 10"  absohm-cms.
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Linear Conductance of Double-Cylinder Systems—The linear
conductance of a double cylinder system will be half that of a plane-
cylinder system of equal d/o; so that:

T T oy

Lo = p coshi =T (7] =v=y abmhos per cm. (33)

where y is the conductivity of the medium. The conductance-
factor of the double-cylinder system is therefore half of that given
in column V. of the table.

Linear Electrostatic Capacity of Double-Cylinder Systenis—The
linear capacity C,, of a double-cylinder system in a diclectric me-
dium of specific capacity « is half the capacity of a plane-cylinder
system of equal d/o; so that:

K

= Ltkcdéh':‘?(i/og) =K ';;IY statfarads per loop cm. (34)

The linear capacity of each cylinder to the zero-potential plane,
or the capacity of the system per cylinder-cm., is given by formula
(7). The capacity factors of a double-cylinder system of given
d/c are thus half of the values given in column VI. of the table;
but the capacity factors of the system per “wire” cm. to zero
potential midplane are those recorded in column VI.

At interaxial distances large with respect to the cylinder-radii,
Y =log.D/e, and we obtain the well known formula

K

‘0= 4log (D]o)

The linear capacity of a double-cylinder system expressed in
microfarads per km. is

statfarads per cm. (35)

£ 1 .

W =5 =g 37 microfarads per cm. (36)
Similarly,

¢ I

€/ =2 =-——x —,

® 5591 55017 4}

Potential Distribution in Double Cylinder System.—All of the

formulas (10) to (31) inclusive referring to the potential distri-

bution in a plane-cylinder system apply immediately to a double-

. microfarads per mile (37)
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cylinder system, after the latter has been analyzed into two asso-
ciated plane-cylinder systems.

Two UNEQUAL PARALLEL CoNDUCTING CYLINDERS.

Let two parallel conducting cylinders, with their axes at C,C,,
Fig. 5, have unequal radii o, and o, cm., and be separated by an
interaxial distance D cm. If the radii were equal, the midplane 2’z
would be the plane of zero potential, when the potentials of the
cylinders are equal and opposite. The zero-potential plane is, how-

Fic. 5. Two unequal parallel conducting cylinders at interaxial distance of
D cm. showing the displacement of the zero-potential plane.

ever, displaced from the larger towards the smaller cylinder through
a distance of SA/2D cm.; so that:

p D EA
=2 T .n cm

38
7 2ngse cm ( )
“=7 720 '

where S =0, + o, is the sum and A=o, — g, is the difference of
the cylinder radii.
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After having established the position of the zero-potential plane
Z'0Z, the linear resistance between the cylinders may be found by
using formula (1) on each side of the plane and adding the two
parts. The linear conductance will then be the reciprocal of this
result.

The linear capacity of each cylinder to zero-potential plane is
to be found by formula (7). The linear capacity per loop cm. may
be found from the linear resistance per loop cm. by the formula:

K
0T AT

For example, if two conducting cylinders of radii ¢, =2 and
o, =1 cm., respectively, are separated in air by an interaxial dis-
tance of 8 cm., the zero-potential plane is displaced through a dis-
tance of % cm., so that d, =41, d,== 31 cm. The ratio d,/s, is
thus 2.004, and d,/s, is 3.815. The distance factor V, is 1.37, and
Y, is 2.014. The linear capacity of C, is 0.305 statfarads per cm.
and of C, 0.248 statfarads per cm., each to zero-potential plane.
The linear capacity of the pair by (39) is 0.1477 statfarad per
loop cm.

The potential distribution in the unequal cylinder system may be
obtained as easily as when the cylinders are equal, since the polar
points A,4,, Fig. 4, lie at equal distances from the zero-potential
plane Z’OZ.

statfarads per cm. (39)

ExcenTrRIC CYLINDERS.

Let the two parallel very thin conducting cylinders be hollow,
with radii o, and o, Let one be placed excentrically within the
other, as shown in Fig. 6, at an interaxial distance D. Let the line
C,C, joining their centers be prolonged as indicated in the figure.
The infinite zero-potential plane will perpendicularly intersect this
line at an inferred distance of SA/2D cm. from the middle point of
D ; so that:

A D
dl = VZD + ‘5‘ cm. (40)
and
SA D
d, = D=3 cm. (41)
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The linear resistance between the cylinders can now be determined
by finding the lincar resistance of each to the infinite conducting
plane by formnla (1) and then taking the difference between these
linear resistances.

Thus, let ¢, =4 ¢, oy =2 cmi,, D == 1 e Then 3=0,A=2,
and d; =06.5 cm., d,==5.5 cn.

The resistance factor for d, by the table is 0.2057.

The resistance factor for d, by the table is 0.1697.

The resistance factor between d, and d;  0.0960.

F16. 6. Two parallel excentric cylinders, one enclosing the other, and the
inferred commmon zero-potential plane.

which multiplied by the resistivity of the medium gives the lincar
resistance hetween the cylinders.

Through the use of formulas (40) and (41) all cases of excen-
tric evlinders may be computed by reduction to the equivalent pair

of plane-cylinder systems.

GraprTicAL CONSTRUCTION OF ISQUIPOTENTIAL AND STREAM LINES
IN A PLANE-CYLINDER SYSTEM.

To draw the equipotential and stream lines of a plane-cylinder

system, when the polar distance O or distance a of the polar axis
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from the parallel plane is known, draw zOK, Fig. 7, to represent
the planec and on the median line OV, perpendicular to zOK mark
off, to scale, the polar distance a=0A. Then to locate any
equipotential circle of radius o= O0/’, mark off with center O, a
distance d=0C=AF’. With center C and the required radius
a, describe the cquipotential circle F/EB. The distance factor V
for this circle will be expressed by

Y= 2 tanh~' (%) numeric (42)

where y, is the distance OF or the v coordinate of the lowest point

BY

’ € - oo d/sinkY-- E

Fic. 7. Diagram for graphic construction of equipotential and stream lines.

on the circle. The potential of the circle with reference to the
plane will be
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Ip
U= 27;17 abvolts (43)

To draw a stream line which shall include with the median line
OA the nth part of all the linear flux in the system, mark off on
OK a distance OG =a cot 2=/n; so that the angle OGA will con-
tain 2x/n radians. Then with center G and radius G, describe
the circular arc AH, which is the required stream-line.

It may be observed that if we draw two coordinate axes ov ow

in the vw plane, the function tanh (7 - w\/—1) will correspond
on the yz plane to the required loci, magnified by a. The locus
of this function, when ¢ is given successive constant values and
w alone varies, is a series of equipotential circles, while when w
is successively assigned constant values and v alone varies, the
loci of successive stream-lines are produced. If 7w is expressed
in terms of = as #/n and 2v=1Y, we have

OF =a tanh v=d—g¢ cm. (44)
OB=a coth v=d + ¢ cm. (45)
CE=a/sinh V=0 cm. (46)
OC =@ coiih ¥ =g . cm. (47)
also OH=—a tan =/n cm. (48)
OK=—a cot =/n cm. (49)
GA=ua/sin (2n/n) cm. (50)
OG=a cot 2n/n cm. (51)

Fig. 8 presents the graphical construction of the function
tanh (v - 7w\ — 1) carried from the ww plane to the vz plane, over
the limits v=—=—1 to v=-+1 and w=—=/2 to w= - /2.
The points marked on the vz plane have their corresponding points
marked on the ys plane. Thus the point p defined by v=r1.0,
w=mx/2 on the vw plane is represented by the point p defined by
V' =1.313, £==0, on the yz plane,or tanh (1 4 =/2-\/ — 1) =1.313.
Corresponding areas on the two planes are shaded alike. It fol-
lows from the formulas already discussed that linear resistances, con-
ductances and capacities are the same between corresponding conduct-
ing surfaces in the two diagrams. Thus, the linear resistance of the
double-cylinder system pgrs—tuz.r is equal to the linear resistance
of the rectangular slab system with pgrs as one electrode and fuvay
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as the other; 1. e, 2/x absohm-cm. Moreover, the linear resist-
ance of any curvilinear element, such as between gr on one cylinder,
and uw on the other, in the yz system, is equal to the linear resist-
ance between the parallel electrodes gr and wue on the rectilinear
vw system (10/7 absohm-cms. with unit resistivity).

p 1
s - N
e % 0 % ‘ N\
- v g g "
3l AL X N
7 a 02
B D e a 04
0 e b PN 55l
T (/ i F 3 -\ \\‘% _{}.
R/ NN\
A He2 H= Ble .?e 4%

Fic. 8. Graphical comparison of (v+4wV—1) and of tanh (v4wV—1).

In Fig. 8, a=0A =1; but it is easy to see that the proposi-
tion of equal linear resistances, conductances and capacities between
corresponding conductors in the double-cylinder and corresponding
rectangular slab systems, is independent of the magnification in
the diagram.



BoRBLON
O O\ O K~

@
~ 0

Utk W N

O o\ OV

&
- O

o
w N

=g
Gude

s s
oL N O

UL U
W -

KENNELLY—THE

111

LINEAR RESISTANCE

[April 24,

11 v A%
Distance Resistance Conductance
Factor Factor Factor
cosh=1 ( f‘f,) Yien 1V 2|V
0.1413 0.0225 7.0787 44.47
0.3149 0.0501 3.1750 10.95
0.4435 0.0700 2.2548 14.16
0.0224 0.0991 1.6067 10.0905
0.7504 0.1204 1.3221 8.307
0.8670 0.1380 1.1534 7.246
0.0022 0.1531 1.0303 6.531
1.0470 0.1666 0.0551 6.002
1.1232 0.17 0.8001 5.504
1.1929 0.1899 0.8383 5.267
1.2560 0.2001 0.79560 4.000
1.3170 0.2000 0.7503 4.771
1.3720 0.2185 0.7284 4.576
1.4255 0.2200 0.7015 4.107
1.4750 0.2348 0.0780 4.259
1.5216 0.2422 0.6572 4.129
1.5668 0.2404 0.6383 4.010
1.6006 0.2502 0.6214 3.003
1.6502 0.2626 0.6050 3.807
1.6886 0.2688 0.5022 3.721
1.7267 0.2748 0.5701 3.639
1.7627 0.2806 0.5673 3.504
1.7975 0.2301 0.5563 3.495
1.8300 0.2014 0.5402 3.432
1.8633 0.2660 0.5367 3.372
1.8046 0.3015 0.5278 3.317
1.0248 0.3003 0.5105 3.204
1.0542 } 0.3110 0.5117 3.215
1.0827 0.3156 0.5044 3.160
2.0104 0.3200 0.4974 3.120
2.0373 0.3242 0.4000 3.084
2.0034 0.3284 0.4816 3.045
2.0880 0.3325 0.4787 3.008
21137 | 03364 0.4731 2.973
2.1380 0.3402 0.4677 2.030
2.1616 | 0.3440 0.4626 2.607
2.1846 0.3177 0.4577 2.876
2.2072 | 0.3513 0.4531 2.817
22202 | 0.3548 0.4486 2.819
2.2507 0.3532 0.4443 2.792
2.2718 0.3616 0.4.402 2.766
22024 | 03640 | 0.4362 2.741
2.3126 0.3681 0.4324 2.717
2.3324 0.3712 0.4287 2.294
2.672

2.3514

0.3743

0.4253

Wi

Capacity
Factor

1/(2Y")

3.5393

1.5378
1.1274
0.8034
0.6011

0.5767
0.5197
0.4776
0.4451
0.4191

0.3978
0.3797
0.3642
0.3508
0.3390

0.3280
0.3102¢
0.3107
0.3030

0.2001

0.2896
0.2837
0.2782
0.2731

0.2684

0.2630
0.2508
0.2559
0.2522
0.2487

0.2454
0.2423
0.2304
0.2366
0.2339

0.2313
0.2289
0.2205
0.2243
Q.2221

0.2201
0.2181
0.2162
0.2144

0.2127

5.2048

VIl

sinh V~

§=\/ @52

0.1418
0.3202
0.4532
0.6033
0.8307

0.9798
1.1180
1.2400
1.3748
1.4907

1.6156
1.7321
1.8466
1.0596
2.0712

2.1817
2.2013
2.4000
2.5080
2.6153

2.7221
2.8284
2.0343
3.0397
3.1448

3.2496
3.3541
3.4583
3.5023
3.6001

3.7606
3.8730
3.07602
4.0792
4.1821

4.2849
4.3875
4.4500
4.5024
4.6047

4.7960
4.8090
5.0010
5.1020
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I 11 111 v v \%! VII
Distance Resistance Condnctance Capacity .
Factor Factor Factor Factor sinh V7
da cosh-1 (‘{) Yienw 1) | 2n/} 1/(217) Z: (g)l—!
= 7 R B
5.4 2.3700 0.3773 0.4218 | 2.650 0.2100 5.3000
5.5 2.3805 0.3803 | 04185 | 2.630 0.2003 5.4083
5.6 2.4078 0.3832 0.4153 2.610 0.2077 5.5100
5.7 2.4258 0.3801 0.4122 2.500 0.2001 5.0116
5.8 | 24435 0.3839 0.4003 2.571 0.2047 5.7131
5.0 2.4608 0.3017 0.4064 2.553 0.2032 5.8146
0.0 1 2.4779 0.3044 0.4030 2.530 0.2018 5.9161
6.5 | 2.5500 0.4073 0.3908 2.455 0.1954 6.4226
7.0 | 26339 0.4192 0.3797 2.386 0.1808 6.0282
75 2.7036 0.4303 0.30600 2.324 0.1849 7.4330
8.0 2.7687 0.4407 0.3012 2.270 0.1806 7.0373
8.5 2.8207 0.4503 0.3530 | 222 0.1770 8.44T0
9.0 2.8873 0.4500 0.3463 2.170 0.1732 8.0443
9.5 2.0417 0.4082 0.3390 2.136 0.1700 0.4472
10.0 2.0932 0.4764 0.3341 2.000 ! 0.1670 0.0490
I 3.0800 0.4016 0.3237 2.034 0.1619 10.0545
i2 3.1763 0.5055 0.3148 1978 | 0.1574 11.0533
13 3.2566 0.5183 0.3071 1.030 0.1530 12.9615
14 3.3300 0.5301 0.3002 1.887 0.1501 13.004
i3 3-4001 0.54TF 0.2041 1.848 0.1471 14.907
16 3.4648 0.5514 0.2836 1814 | 0.1443 15.060
i7 3.5255 0.5011 0.2837 1.782 0.1418 16.071
18 3.3827 0.5702 0.2791 1.754 0.1390 17.972
10 3.6360 0.5788 0.2750 1.728 0.1375 13.074
20 3.0882 0.5370 0.2712 1.70.4 0.1350 10.075
21 3.7371 0.5948 0.2676 1.681 0.1338 20.970
22 3.7837 0.6022 0.2643 1.661 0.1321 21.977
23 3.8282 0.6003 0.26012 1.641 0.1300 22.078
24 3.8708 0.6161 0.2584 1.623 0.1202 23.979
25 3.0116 0.6226 0.2557 1.606 0.1278 24.080
26 3.0500 0.6287 0.2531 1.500 0.1260 25.081
27 3.0887 0.6348 0.2507 1.575 0.1254 20.081
28 4.0250 0.6400 0.2485 1.561 0.1243 27.082
20 4.0004 0.6462 0.2463 1.548 0.1232 28.083
30 40041 | 0.6516 0.2443 1.535 0.1221 20.083
32 || 4150 | 06610 0.2404 1.511 0.1202 31.084
34 4.2103 | 0.6715 0.2370 1.489 0.1185 33985
30 4.2765 0.6306 0.2338 1.469 0.1169 35.086
38 4.3300 0.6802 0.2300 1.451 0.T155 37.087
40 4.3810 0.6072 0.2282 1.434 0.114T 30.087
2 4.4307 | 0.7051 0.2257 1.418 0.1129 41.083
44 4.4772 0.7126 0.2234 1.403 0.1117 43.080
46 4.5217 0.7190 0.2212 1.300 0.1100 45080
48 4.5642 { 0.7264 | 0.2101 1.377 0.1000 47.000
50 4.6031 0.7320 { 0.2172 1.364 0.1086 40.000
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I 11 111 v VI VII
Distance Resistance Conductance Capacity .
F;}i}:tor Factor Factor Factor sinh 17

djo cosh-1 (Tj) Yizmw 1V en/V 1/(21) :;:,\}(‘5)-—1
52 4.6443 0.7302 0.2153 1.353 0.1077 52
54 4.6821 0.7452 0.2130 1.342 0.1063 34
50 4.7184 0.7509 0.2119 1.332 0.1000 30
58 47535 0.73605 0.2104 1.322 0.1052 58
60 4.7874 0.7610 0.2088 1.312 0.1044 60
05 4.8676 0.7747 0.2054 1.291 0.1027 65
70 4.0416 0.7804 0.2024 1.272 0.1012 70
75 5.0100 0.7975 0.1000 1.254 0.0008 75
8o 5.0751 0.8077 0.1070 1.238 0.0085 8o
85 5.1358 0.8173 0.1047 1.224 0.0074 85
Q0 5.1030 0.8264 0.1026 1.210 0.0003 00
05 5.2470 0.8350 0.1000 1.108 0.0053 95
100 5.2083 0.8433 0.18874 1.1830 0.00437 100
110 5.30360 0.8585 0.18540 1.1648 0.09270 110
120 5.4806 0.8723 0.18246 1.1464 0.00123 120
130 5.5007 0.8852 0.17083 1.1208 0.08002 130
140 5.0348 0.8060 0.17747 1.1150 0.08871 140
130 5.7038 0.0078 0.17532 1.1016 0.08766 150
160 5.7683 0.0180 0.17336 1.0802 0.08668 160
170 5.8200 0.0278 0.17156 1.0778 0.08578 170
180 5.8861 0.0360 0.16080 1.0674 0.08405 180
100 5.0402 0.0456 0.16834 1.0577 0.08417 100
200 5.0015 0.0530 0.16600 1.0486 0.08345 200
220 6.0868 0.0088 0.16420 1.0322 0.08215 220
210 6.1738 0.0827 0.16197 1.0176 0.08000 240
260 6.2538 0.005.4 0.15000 1.0047 0.07005 260
280 6.3270 1.0071 0.15803 0.0030 0.07002 280
300 6.3060 1.0180 0.15033 0.0822 0.07817 300
320 6.4615 1.0283 0.15476 0.9725 0.07738 320
340 6.5221 1.0381 0.15322 0.0034 0.07666 340
360 6.5703 1.047T 0.15100 0.0550 0.07600 360
380 6.0333 1.0557 | 0.15075 0.0473 | 0.07538 380
400 6.6846 1.0039 0.14060 0.0400 0.07480 400
420 6.7334 1.0710 0.1485T 0.0332 0.07426 420
440 6.7799 1.0700 0.14740 0.0268 0.07375 440
460 6.8244 1.0862 0.146053 0.0207 0.07327 460
480 6.8660 1.0920 0.14503 0.9151 0.07282 480
500 6.0078 1.0003 0.14476 0.0096 0.07238 500
550 7.0031 1.1146 0.14270 0.8072 0.07140 550
600 7.0001 1.1284 0.14101 0.8862 0.07052 600
650 7.1701 1.14T1 0.13047 0.8764 0.00074 630
700 7.2442 1.1530 0.1380.4 0.8674 0.00002 700
750 7.3132 1.1640 0.13674 0.8501 0.06837 750
8oo 7.3778 1.1741 0.13554 0.3518 0.06777 Soo
850 7.4384 1.1838 0.13444 0.8449 0.06722 830
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1 11 111 v vi | wvn
Distance Resistance Conductance Capacity q
Factor Factor Factor Factor | sinh 1
dlo oS ( f) Vizm Ly 2l ¥V 1/(2Y) ;:—: 7\/ (g) 2—1

000 7.4955 1.1930 0.13341 0.8383 0.00071 goo
950 7.5400 1.2010 0.13216 0.8323 0.00023 950
1000 7.6000 1.2007 0.13150 0.8260 0.00578 1000
1100 7.6002 1.2219 0.12093 0.3165 0.60497 1100
1200 7.7832 1.2387 0.12848 0.8074 0.00424 1200
1300 7.8033 1.2515 0.12717 0.7000 0.00350 1300
1100 7.9374 ’ 1.2632 0.12500 0.7916 0.00300 1400
1500 80004 | 1.2742 0.12460 0.7848 0.00245 1500
1600 8.0709 | 1.2845 0.12300 0.7736 0.00195 1600
1700 8.1315 1.29.40 0.12208 0.7728 0.00149 1700
1800 8.1837 1.3032 0.12212 0.7074 0.00100 1800
1600 8.2428 1.3118 0.12132 0.76024 0.00000 1900
2000 8.2041 | 1.3200 0.12050 0.757 0.00028 2000
2100 83428 | 1.3278 0.11986 0.7532 0.05993 2100
2200 | 8.3804 1.3351 0.11920 0.7490 0.05000 2200
2300 8.4338 1.3423 0.11857 0.7451 0.05929 2300
2400 847604 1.3190 0.11703 0.7414 0.05899 2400
2500 8.5172 1.3555 0.11741 0.7378 0.05871 2500
2600 8.5504 | 1.3618 0.11687 0.7344 0.05844 2600
2700 8.5042 i 1.3678 0.11636 0.7312 0.05318 2700
2800 86305 | 1.3735 | 0.11587 0728 | 005704 2800
2000 8.6650 | 13791 0.11540 0.7251 0.05770 2000
3000 8.6005 1.3845 0.11495 0.7224 0.05748 3000
3100 8.7323 i 1.3808 0.11452 0.7196 0.05720 3100
3200 87641 | 1.3049 0.11410 0.7170 0.05705 3200
3300 87048 | 1.3000 0.11370 0.7144 0.05085 3300
3400 88217 | 1.4043 0.11332 0.7121 0.05000 3400
3500 8.8537 1.1000 0.11205 0.7008 0.05048 3500
3600 8.8318 11135 0.11259 0.7075 0.05630 3600
3700 8.0002 1.1180 0.11224 0.7053 0.05612 3700
3800 8.0350 1.4220 0.11191 0.7032 0.05596 3800
3000 8.06109 1.4262 0.IT158 0.7012 0.05579 3000
4000 8.0872 1.4302 0.11127 0.6002 0.0550.4 4000
4100 0.0118 1.4342 0.11007 0.6073 0.05549 4100
4200 0.0360 1.1381 0.11007 0.6054 0.05534 4200
4300 0.03505 1.44T0 0.11038 0.69360 0.0551Q 4300
4400 0.0825 1.14560 0.11010 0.6018 0.05505 4400
4500 0.1050 1.4401 0.10033 0.6002 0.05402 4500
4600 0.1270 1.4526 0.10057 0.6885 0.05479 4600
4700 0.1485 1.4500 0.10931 0.6860 0.05166 4700
4800 0.1605 1.4503 | 0.10000 0.6853 0.05453 4800
4900 0.1g0T 1.4627 0.10881 0.6838 0.05441 4000
5000 0.2103 1.4650 0.10857 0.6822 0.05420 5000
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NoTATION.
a = polar distance or distance of polar axis from parallel plane
in a plane-cylinder system, cm.
¢, = linear capacity of plane-cylinder system, statfarads/cm.

¢,/ = linear capacity of plane-cylinder system, microfarads/km.
¢, = linear capacity of plane-cylinder system, microfarads/mile
oo = linear capacity of double-cylinder system,  statfarads/cm.
oo = linear capacity of double-cylinder system, microfarads/km.
oo = linear capacity of double-cylinder system, microfarads/mile

d = distance of cylinder axis from plane, cim.
d,d, = distances of cylinder axes from plane in double-cylinder
system with unequal cylinders, cm.

D — 2d or interaxial distance between two cylinders in a double
cylinder system, cm.

A = o, — o, =difference in radii of two cylinders, cm.

8 = current density at a point in the medium, absamperes/cm.%
gp= linear conductance of plane-cylinder system, abmho/cm.
Joo = linear conductance of double-cylinder system, abmho/cm.
x = specific inductive capacity of medium,

v==conductivity of medium, abmho/cm.
I = linear current in a system, absamperes/cm.
L — length of flux paths in rectangular slab, cm.
m = r'/r, polar ratio, or ratio of vector lengths from poles to

a point in the medium, numeric

1/n—a fractional part of the total linear flux, limited by a
stream line.
7= 3.14150 - ..
r,#'= polar distances or vector lengths from poles to a point.
rp== linear resistance of a plane-cylinder system  absohm/cm.
74, = linear resistance of a double-cylinder system, absohm/cm.

¢ = linear electric flux in a system, statmaxwells /cm.
p = resistivity of medium, absolm-cim.
S = linear surface arca of a conducting slab, cm.?/cm.
3= o, + o,—=sum of radii of two unequal cylinders, cim.
o=radius of a cylinder, ci.
1 == potential of a cylinder, abvolts or statvolts
vw = rectangular coordinates of points in a plane, cm.
Y = distance factor of a system=—cosh*(d/cs), nunieric
Yz = rectangular coordinates of points in a plane, cm.

V.Y, = y-coordinates of points on median line below a cylinder, cm.
y,9, = y-coordinates of points on median line above a cylinder, cm.
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